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Hidden Measurement Model for Pure and Mixed
States of Quantum Physics in Euclidean Space
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We propose a representation of quantum mechanics where all pure and mixed
states of a n-dimensional quantum entity are represented as points of a subset of
a n>-dimensional real space. We introduce the general measurements of quantum
mechanics on this entity, determined by sets of mutual orthogonal points of the
representation space. Within this framework we construct a hidden measurement
model for an arbitrary finite dimensional quantum entity.

1. INTRODUCTION

In Aerts (1986), it is shown that it is possible to find the quantum
structure originating in the presence of a lack of knowledge about the interac-
tion between the measuring apparatus and the physical entity under study.
Aerts has expressed this idea in the following way:

1. To each real measurement e there corresponds a collection of determin-
istic measurements ey, A € A, and these deterministic measurements are
called “hidden measurements” in analogy with the “hidden variables.”

2. When a measurement e is performed on an entity S in a pure state
p, then one of the hidden measurements e, takes place. The probability finds its
origin in the lack of knowledge about which one of the hidden measurements
effectively takes place.

This approach is not in contradiction with the no-go theorems about
hidden variables (all of them inspired by the von Neumann proof), since the
hidden variables in the hidden measurement approach are contextual by
definition. It is important to notice that the state p is not dependent on the
parameter A. Analogously, the selection of one lambda is independent of the
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state of the system. It is these two restrictions which distinguish between a
general hidden variable model and a hidden measurement model.

In the same paper, Aerts introduces a concrete model, now referred to
as the “elastic-model” (see Aerts, 1994), which entails a representation of a
hidden measurement model for the spin of a spin-1/2 quantum entity in a
three-dimensional Euclidean space. It was an open question whether such an
explicit real-space hidden-measurement representation could be constructed
for a quantum entity described in an arbitrary n-dimensional complex Hil-
bert space.

We show in this paper that the answer to this question is affirmative. It
also poses no problem to consider the set of mixed states of this entity as state
space. To do this we use a Euclidean representation of quantum mechanics as
introduced in Coecke (1994). In Sections 2 and 3 of this paper we summarize
some aspects of this representation. In Section 4 we describe the generalized
elastic model.

2. PURE STATES, MIXED STATES, AND PURE
MEASUREMENTS

We denote by 2P the set of pure states of a quantum entity S. This
means that every state p € 2P can be represented as a ray ﬂ;,, in a Hilbert
space J€. If n is the dimension of the Hilbert space, we will state this by
writing 22, The n-dimensional Hilbert space itself will be denoted by ,.
We will always consider j > i in expressions containing r;r;. We also consider
r; € [0, [ and 6; e [0, 2m]. With 8;; = 32,.,; 6, we introduce =, as the
following set of points of the n>-dimensional real space:

B, = (V2 rircos 85, 2 rirysin b, .. .,
ﬁ rirj €os 9;;, ﬁ rirpsin 9, ...,
ﬁ Fu—1¥s COS O, ﬁ Fu_1¥, Sin 9,
rhoorh o rh Y =1 (1)

l=i<n
Define w,: %, — Z, by
1
w|?
V2 Re(ily), V2 Imily), - . . »
V2 Re(Wnm 1), V2 Im(,-5,), Uiy, ., G, - ) ()

() = J2 Re(d), V2 Im(Uydsy), - . .,
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If we introduce $§™; 28 — ¥, which maps a quantum state p which
corresponds with the ray JJ,, onto a representative vector {s,, we can define
Greure; Fpure 5 H o as w, © S8, In Coecke (1994) we proved that this map
is bijective.

Proposition 1. The set of points Z, are the points of S, the 2-dimen-
sional sphere.

Proof. Let us introduce a translation 7 on =, with the vector (0, 0, —1/2,
—1/2), ascaling K with a factor \/E, and arotation O of the last two components
over an angle of /4. We obtain

[0° K> TI(Ey
= {(2ryr, cos By, 2r(ry sin 6, rt — r3, 0)|rf + 3 = 1)
For x = (xy, X3, X3, 0) € [Q o Ko T}(E,) we have
|x|? = x} + x5 + x}
= 4r3r3cos? 0, + 4r3risin® 0, + rt + r§ — 2rir}
=2r3ri + ri + 1}
=(@ri+rp)’=1 nm

In quantum mechanics a measurement e performed on an entity is
represented by a self-adjoint operator H, on an Hilbert space #. We know
that every self-adjoint operator H, is completely determined by its spectral
measure E: B(a,) - Eg, where to every A in B(c,), the collection of Borel
sets of the spectrum o, of the operator H,, there corresponds an orthogonal
projection E, in €y, the set of orthogonal projections. For a finite-dimensional
Hilbert space 9, we can write a self-adjoint operator H, with {JJl, o by)
as a set of mutual orthogonal eigenrays and {e,, . .., e,} (some of them may
be equal) as corresponding eigenvalues as follows

H, = X eEj, 3)

where Ej, is the projector on the ray {);. Following equation (3), the projectors
on one-dimensional subspaces of the Hilbert space are the building blocks
of a general measurement.

Definition 1. If a measurement e can be represented by E;, , the projector
on a ray of the Hilbert space ¥, we call it a pure measurement. Such a pure
measurement will be denoted by e,.

Definition 2. If the entity S is in a state p € 3, and the measurement e
is performed, the state of the entity changes. The probability that the state p
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is changed by this measurement into the state g shall be denoted by P.(g!p)
and we call P,: 3 X 3 — [0, 1] the transition probability by e in .

Lemma 1. Let &, & € #, such that 1yl = Il = 1. Then [l d)I?
= () - pn(P)-

Proof. Write 6 = ({5, ..., ¥,) and & = (b4, ..., $,). Then
[ )|

= [ e

= 2 by

=3 babbid; + > Uiy by + > bl by by
i i<j i<j
=2 b + 2 X [Re(Wly) Re(didy) + Im(Yaly) Im(dbih;)]

i<j

= 2 Yabbib; + > J2 Re(‘l&@j)ﬁ Re((b@,-)

i<j

+ > V2 Im(Pa) 2 Im(did;))

i<j
= () py(d) =

Theorem 1. If e, is a pure measurement on an entity S in state p €
Zpve, we have for x, = RE(q) and x, = RE(p): P, (q1p) = x,°x,.

Definition 3. Let { p;li € I} C 3P where [ is a countable set of indices.
Then p: {p;li € I} — [0, 1] with 3; p(p;) = 1 defines a probability measure
on {p;li € I}. We define a mixed state p, by stating that the state of S is p;
with probability p(p;). The set of all mixed states of the entity S shall be
denoted by Emix,

Clearly 3P C 3™ A “mixed” state describes a situation with a lack
of knowledge concerning the pure state of the system. As a direct consequence
of Definition 3 we also have the following relation concerning the transition
probabilities: P, (q1p,) = 2 p(p)P.(q!p)).

Let &, be the convex closure of E,. We can now formulate the main
theorem concerning the representation of the states of a quantum entity in
Euclidean space. The proof of this theorem can be found in Coecke (1994).

Theorem 2. We can define a one-to-one map Rrixed: Smixed 5 = \which
maps every state p, € 2" onto a point x,, the geometrical mean of the
composing states in the mixed state ; p(pi)x,, and which is such that we
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have following relation for the probabilities: P, (q1p,) = x, x,, and such
that when we restrict the domain to =, we have %{{‘”‘e‘“g” = Jppure,

3. GENERAL MEASUREMENTS

As expressed in equation (3), we can construct the measurements with
n outcomes on the states represented in =,, with projectors Ej, representing
pure measurements, By assigning the same eigenvalue to different eigenstates,
we can also construct the measurements with less than r outcomes. The
probability for obtaining an outcome e; will be denoted by P,(p).

Theorem 3. Let S be a quantum entity represented in 3,. Let e be
a measurement represented by a self-adjoint operator H, with n different
eigenvalues {ej, ..., e,}. Then there exists one set ¥, = {x,,, ..., x,} of
mutual orthogonal points of =, such that for every state p, of S, we have
following relation for the probability for obtaining an outcome e;: P, (p,) =
X" Xp-

i

Proof. Since all eigenvalues are different, there exists one set
{lf!e,, cees Jfgn} of mutual orthogonal eigenrays corresponding to these eigen-
values, and thus a set {p,, ..., p,} of corresponding eigenstates. Let x,, be
Reee(p) € E,. Fori # j we have Xyt Xgy = | )| 2 = 0. For the probability
we find

Pei(pp) = Pe(pi}pp) = ‘(d’e,‘N’p)P = Pepl.(pilpp) = Xe " Xp

Unicity follows from, on the one hand, the fact that RE¥™e; Tpvre 5 = is one
to one such that H # H' = ey # ey and, on the other hand, the unicity of
a state p, that fulfills P.(p;|p,) = 1, namely the state p; itself. |

Theorem 4. Let X = {x,, ..., x;} be a set of k mutual orthogonal points
of =, and thus representing Ay, a subspace of ¥, with [,] (%) as a base.
If we define xz by x¢ = 2iZ% x;, we have for the points in the pointwise
representation of the subspace xy-x = 1. Thus we have for xxg, the angle
between x and xy, Xxg = Arccos(1/ \/E).

Proof. We have

i=k i=k i=k
X Xg = X'EI X = 21 (xx) =2 [ U P =1 (U, € Ag)
i= i= i=1
Sin\c/e_ all the x; are mutual orthogonal, we have that lxyl = 2% x;
= Jk. [

Theorem 5. Let A be a k-dimensional subspace of ¥, and let us denote
by [{Al1)| the modulus of the orthogonal projection of the vector {s on the
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subspace A. Then there exists a unique point x, such that for every possible
orthonormal base {{, ..., U} we have x;, = 22k w, ) (= SiZh x). We
also have 1{A1{)1? = x,-x, for every ¢ € ¥, and thus x, is representative
for A in the way that a point x, is representative for the ray determined by .

Proof. We have to prove that for every other set % = {xf, ..., x} of
mutual orthogonal points in p,(A) we still have that 2{=% x] = xp = xfy Let
k be the dimension of A. Because of Theorem 2 we know that there exist &2
linear independent vectors in A, and hence a base of the k*-dimensional real
vector space (Theorem 4). Since both points xg and xy have the same
coordinates in this base (Theorem 4), namely all 1, we can only have a unique
point x,. Concerning the probabilities we have

i=k i=k

(Al = 2 || )] = 2 (" xy) = Xy 2 Xy = Xyxy W

Definition 4. Let s, be the set of all subspaces of the Hilbert space ..
We also introduce following set:

Ea, =1 2 P«n(ll’,-)|A e A, X, base of A}

ie¥a

Then define py,: 9, = Ey, as the map which maps every subspace A e
A, onto its representative point x,.

The results of Theorems 3-5 lead us to the main theorem of this section.

Theorem 6. Let S be a quantum entity represented in ¥,,. Let e be a
measurement represented by a self-adjoint operator H, with eigenvalues
e, . .., € and corresponding eigenspaces A, ..., A;. Then there exists one
set X, = {x,,,...,x,} of mutual orthogonal points of py (s4,) such that for
every state p, of S we have P,(p,) = x,, %, as probability for obtaining an
outcome e;. For the points in %, we have 2{Z} X, = Xge,.

4. A GENERAL HIDDEN MEASUREMENT MODEL FOR QM IN
A FINITE-DIMENSIONAL HILBERT SPACE

Let A = {x|% <<, x; = 1 and 0 = x; = 1} be the set of points of the
Euclidean simplex spanned by {4y, . .., &,}, a set of canonical base vectors.
Let x be one point in A. A “selection” s for a given x consists in executing
a deterministic process s, where A e A is a uniformly distributed stochastic
variable. We define s, as follows:

« Let A, be the convex closure of {h,, ..., hi_\, x, by, ..., h,} and
thus U, A,‘ = A.
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o If A € A, then x changes to A,

* The probability of \ being on the border of two regions A; and A;
is zero. These situations will not contribute to global probabilistic
results and as a consequence it will not be necessary to make any
conventions for this case.

This concludes the description of s, and thus s itself.

Proposition 2. Consider a point x = (x, ..., x,) € A with A defined
as above. Let s be a selection mechanism. The probability for obtaining an
outcome #; is x;.

The proof of this proposition can be found in Aerts (1986).

We will now describe the hidden measurement model for a measurement
e with n different possible outcomes on the entity S described in %,. Let x,
e E, be representative for the state p, of the entity. A measurement e will
be defined by the following steps:

* Let{x,, ..., x,) bethe set of eigenstates of e. These n-points define
an (n — 1)-dimensional Euclidean simplex.

* One can project x, orthogonally on the n-dimensional subspace
spanned by {x,,, ..., x,,}. This gives a point x, (this is in fact a first
transition of the state in the space E,: X, = Xxp).

*  We now perform a hidden measurement e, through the selection s,
with x, as the initial state and {x,,, ..., x,,} as the canonical base
{h1,. .., h,}. Thus we find one unique final state and thus one unique
outcome for this measurement (this is a second transition of the state
in En: XF', - xouicome)-

Theorem 7. The probability for obtaining a final state p; represented by
x,, in a measurement e € %, on an entity in a state p, described by 5, is
the scalar product x,- x.;: Pp;lp,) = x,°x,,.

Proof. x;, is the restriction of x, to the linear subspace spanned by
{X.;, ..., x,}. In this subspace of outcome states we can express x, in the
base {x., ..., X.,}, which gives us (x,-x,, ..., x,°x,) as coordinates. By
Proposition 2 we know that x; - x,, is the probability for obtaining an outcome
X,; in the selection. Clearly x,-x,;, = x,"x,,, which completes the proof. =

From this it follows that the above construction is in fact a hidden
measurement model for the measurement e. Along the lines of Proposition
1, one easily verifies that for the case n = 2, one finds Aerts’ elastic model.

We still have to describe what happens for a measurement with less
than n outcomes. Suppose we have [ possible outcomes ¢, ..., e. It is
possible to find a set of » mutual orthogonal points & such that there exist,
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a partition of this set in / disjoint subsets &, . . . , &, each of them containing
points representing eigenstates corresponding to the respective eigenvalues
e, . .., e.Letus consider the hidden measurement model as described above
with % as the canonical base {h,..., k,}. The probability to obtain an
outcome ¢; is the sum of the probabilities to obtain one of the x & &, which
gives Exeggi X'X, = Xy, X, (We use the notations of Section 3). Thus one
finds the same probabilities as in quantum mechanics. As the final state we
find one of the eigenstates corresponding to the obtained eigenvalue. The
random selection of a certain set ¥ out of all the possible ones can also be
considered as due to a lack of knowledge concerning the measurement.
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