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Hidden Measurement Model for Pure and Mixed 
States of Quantum Physics in Euclidean Space 
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We propose a representation of quantum mechanics where all pure and mixed 
states of a n-dimensional quantum entity are represented as points of a subset of 
a nZ-dimensional real space. We introduce the general measurements of quantum 
mechanics on this entity, determined by sets of mutual orthogonal points of the 
representation space. Within this framework we construct a hidden measurement 
model for an arbitrary finite dimensional quantum entity. 

1. I N T R O D U C T I O N  

In Aerts (1986), it is shown that it is possible to find the quantum 
structure originating in the presence o f  a lack of  knowledge about the interac- 
tion between the measuring apparatus and the physical entity under study. 
Aerts has expressed this idea in the fol lowing way: 

1. To each real measurement e there corresponds a collection o f  determin- 
istic measurements ex, k ~ A, and these deterministic measurements are 
called "hidden measurements" in analogy with the "hidden variables." 

2. When a measurement e is performed on an entity S in a pure state 
p,  then one o f  the hidden measurements ex takes place. The probability finds its 
origin in the lack o f  knowledge about which one of  the hidden measurements 
effectively takes place. 

This approach is not in contradiction with the no-go theorems about 
hidden variables (all of  them inspired by the von Neumann proof), since the 
hidden variables in the hidden measurement  approach are contextual by 
definition. It is important to notice that the state p is not dependent on the 
parameter X. Analogously,  the selection o f  one lambda is independent o f  the 
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state of the system. It is these two restrictions which distinguish between a 
general hidden variable model and a hidden measurement model. 

In the same paper, Aerts introduces a concrete model, now referred to 
as the "elastic-model" (see Aerts, 1994), which entails a representation of a 
hidden measurement model for the spin of  a spin-l/2 quantum entity in a 
three-dimensional Euclidean space. It was an open question whether such an 
explicit real-space hidden-measurement representation could be constructed 
for a quantum entity described in an arbitrary n-dimensional complex Hil- 
bert space. 

We show in this paper that the answer to this question is affirmative. It 
also poses no problem to consider the set of mixed states of  this entity as state 
space. To do this we use a Euclidean representation of quantum mechanics as 
introduced in Coecke (1994). In Sections 2 and 3 of this paper we summarize 
some aspects of this representation. In Section 4 we describe the generalized 
elastic model. 

2. PURE STATES, MIXED STATES, AND PURE 
MEASUREMENTS 

We denote by ~pure the set of pure states of a quantum entity S. This 
means that every state p E E pure can be represented as a ray t~ r in a Hilbert 
space 7~. If  n is the dimension of the Hilbert space, we will state this by 
writing Epure. The n-dimensional Hilbert space itself will be denoted by ~n. 
We will always considerj  > i in expressions containing rirj. We also consider 
r i ~ [0, oe[ and 0i ~ [0, 2~r]. With 0ij = "Zi<k~_j Ok we introduce ~n as the 
following set of points of the nZ-dimensional real space: 

- n  = = { ( . ~  rlr2 cos 02, . ,~  rtr2 sin 0=, . . . ,  

. f2  rirj cos Oij, , f2  rirj sin 0ij . . . . .  

, ~  rn- 1 rn cos On, , ~  rn_ 1 rn sin On, 

r 2 . . . . .  r~ z . . . . .  r2)] • r~ = 1} (1) 
l<_i<_n 

Define txn: ~n --~ ~n by 

1 
/.Zn(~) = ~-~  (~/2 Re(t~l~2), ~/2 Im(t~l~2) . . . . .  

x//2 ge(t~i~j), ~ Im(tl/i~i) . . . . .  

. /2  Re(~._,~.) .  ~ I m ( t ~ _ , ~ ) .  , , ~ ,  . . . . .  *i~i . . . . .  t ~ , , )  (2) 
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If  we introduce --n~PU~e'. --n'TPU~e _.~ ~n which maps a quantum state p which 
corresponds with the ray t~p onto a representative vector t~p, we can define 
~pure: Epure __+ ~n as p~, o 5ePU~% In Coecke (1994) we proved that this map 
is bijective. 

Proposition 1. The set of  points ~'~2 a r e  the points of S 2, the 2-dimen- 
sional sphere. 

Proo f  Let us introduce a translation T on -~2 with the vector (0, 0, - 1/2, 
- 1/2), a scaling K with a factor ,f2, and a rotation O of the last two components 
over an angle of  rr/4. We obtain 

[O o K o T](E2) 

= {(2qr2 cos 02, 2rlr2 sin 02, r~ - r~, 0)Jr 2 + ~ = 1} 

For x = (&, x2, x3, 0) e [O o K o T](~-z) we have 

IX] 2 = X 2 q- X 2 q- X 2 

= 4 r  {r 2cos 202 + 4 r  2r 2sin 2 0 2 +  r 4 + r 4-2rz~r22 

= 2r2r 2 + r 4 + r 4 

= (r 2 + r2) 2 = 1 [] 

In quantum mechanics a measurement e performed on an entity is 
represented by a self-adjoint operator H~ on an Hilbert space ~ .  We know 
that every self-adjoint operator He is completely determined by its spectral 
measure E: ~(~re) --+ %~e, where to every A in ~(~e),  the collection of Borel 
sets of  the spectrum ~e of the operator H~, there corresponds an orthogonal 
projection Ea in %~, the set of orthogonal projections. For a finite-dimensional 
Hilbert space ~ ,  we can write a self-adjoint operator He with {t~l . . . . .  +,} 
as a set of  mutual orthogonal eigenrays and { e ~ . . . . .  e,, } (some of them may 
be equal) as corresponding eigenvalues as follows 

H e = s eiE@i (3) 
i 

where E~ is the projector on the ray t~i. Following equation (3), the projectors 
on one-dimensional subspaces of  the Hilbert space are the building blocks 
of a general measurement. 

Definition 1. If  a measurement e can be represented by E~q, the projector 
on a ray of the Hilbert space ~ ,  we call it a pure measurement. Such a pure 
measurement will be denoted by eq. 

Definition 2. If  the entity S is in a state p e ~, and the measurement e 
is performed, the state of the entity changes. The probability that the state p 
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is changed by this measurement into the state q shall be denoted by P~(q I p) 
and we call Pe: s • Z ~ [0, 1] the transition probability by e in E. 

Lemma 1. Let , ,  + ~ ~ .  such that I , I  = lob 
= 

Proof  W r i t e ,  = (*l . . . . .  tbn) and + = (+l, . .  

t<,1+>12 

= I , , Z ,  + . . .  + , o ; . n  

= 1. Then I(,1+)12 

, +.). Then 

l,J 

= E ,,,i+i+i + E + E 
i i<j i<j 

= E *i*i+i+i + 2 ~ [Re(,i~j) Re(+i~j) § Im(t~i~j) Im(cbi~j)] 
i i<j 

= E *i*i+i+i § E ~ Re(,i~j),,f2 Re(+i;j) 
i i<j 

+ E ~ Im( , ;~ j ) , f2  Im(+~+j) 
i<j 

= ix,,(,)-tx.(+) �9 

Theorem 1. If  eq is a pure measurement on an entity S in state p E 
]~n p"r~, we have for Xq = ~p.re(q) and Xp = ~p.re(p): P~q(qlp) = Xq'Xp. 

Definition 3. Let { pil i ~ I} C ~,pure, where I is a countable set of  indices. 
Then p: {pil i  ~ I} ---> [0, 1] with Zi p(pi) = 1 defines a probability measure 
on {p~l i ~ I}. We define a mixed state pp by stating that the state of S is p~ 
with probability p(pz). The set of all mixed states of the entity S shall be 
denoted by E rn~. 

Clearly Z pure C Z rni~. A "mixed" state describes a situation with a lack 
of knowledge concerning the pure state of the system. As a direct consequence 
of Definition 3 we also have the following relation concerning the transition 
probabilities: P~q(q l pp) = ~i p(pi)Peq(q l pi). 

Let E .  be the convex closure of E. .  We can now formulate the main 
theorem concerning the representation of the states of  a quantum entity in 
Euclidean space. The proof of  this theorem can be found in Coecke (1994). 

Theorem 2. We can define a one-to-one map ~nQT:/mixed'- --n'~mixed ~ ~n which 
maps every state pp ~ Z m~ed onto a point xp, the geometrical mean of the 
composing states in the mixed state 22i P(pi)xpi, and which is such that we 
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have following relation for the probabilities: P~q(qlpo ) = xq.xo, and such 
that when we restrict the domain to ~ .  we have ~ff~mixed - = 9~pure 

3. G E N E R A L  M E A S U R E M E N T S  

As expressed in equation (3), we can construct the measurements with 
n outcomes on the states represented in ~,,, with projectors E~, representing 
pure measurements, By assigning the same eigenvalue to different eigenstates, 
we can also construct the measurements with less than n outcomes. The 
probability for obtaining an outcome ei will be denoted by Pei(P). 

Theorem 3. Let S be a quantum entity represented in ~n. Let e be 
a measurement represented by a self-adjoint operator He with n different 
eigenvalues {el . . . . .  e,,}. Then there exists one set ~e = {xe~ . . . . .  x~,,} of 
mutual orthogonal points of En such that for every state pp of S, we have 
following relation for the probability for obtaining an outcome el-: Pei(Pp) = 
Xei "Xp. 

Proof  Since all eigenvalues are different, there exists one set 
{d~e~ . . . . .  t~e,} of  mutual orthogonal eigenrays corresponding to these eigen- 
values, and thus a set {Pl . . . . .  pn} of corresponding eigenstates. Let Xe~ be 
~ff~pure(pi) E ~n" For i 4: j we have xe~" x v = I (+,.i I t~v ) 12 = 0. For the probability 
we find 

Pez(Pp) = P~(PiIPp) = I<,e,l p>l 2 : Pep,(pilpp) = Xei'X 9 

En ---> =~ is one Unicity follows from, on the one hand, the fact that ~ p u r e :  pure " "  

to one such that H 4: H '  ~ e H r  e. ,  and, on the other hand, the unicity of 
a state P0 that fulfills P~(pilpo) = 1, namely the state p~ itself. �9 

Theorem 4. Let ~ = {xl . . . . .  xk} be a set o f k  mutual orthogonal points 
of ~ . ,  and thus representing A~e, a subspace of 7f,, with [ ix.]- l(~)  as a base. 
If  we define x~e by x~e = Ei-~ x~, we have for the points in the pointwise 
representation of the subspace x ~ . x  = 1. Thus we have for ~x~, the angle 

,//) between x and x~e, xx~e = Arccos(1/ . 

Proof  We have 

i=k i=k i=k 

X 'X~ : X" E Xi ~--- E (X'Xi) : E I<+~l+x/>l = = 1 ( t ~  ~ A~e) 
i=l i=1 i=1 

Since all the xi are mutual orthogonal, we have that Ix~el = I';i=k~i=~ xil 
----- , ~ .  �9 

Theorem 5. Let A be a k-dimensional subspace of 7f~ and let us denote 
by I (A 1~)1 the modulus of the orthogonal projection of the vector ~ on the 
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subspace A. Then there exists a unique point XA such that for every possible 
orthonormal base {t~l . . . . .  tbk} we have X A : ~ : ; k  ~Ln(l~ji ) ( :  ]~=k Xi). We 
also have I(AI~)I 2 = XA "Xw for every d) ~ ~n and thus XA is representative 
for A in the way that a point xq, is representative for the ray determined by t~. 

Proof  We have to prove that for every other set ~ '  = {x'~ . . . . .  x~} of 
mutual orthogonal points in Dn(A) we still have that Ei--~ x~ = x~e, = x~. Let 
k be the dimension of A. Because of Theorem 2 we know that there exist k 2 
linear independent vectors in A, and hence a base of the k2-dimensional real 
vector space (Theorem 4). Since both points x~e, and x~e have the same 
coordinates in this base (Theorem 4), namely all 1, we can only have a unique 
point XA. Concerning the probabilities we have 

i=k i=k i=k 

[<al~'>] 2= E I<~'/l~>l 2= E ( x , i x ~ )  = x , .  E x~, = xd~'x A �9 
i=1 i=1 i=1 

Definition 4. Let ,~/, be the set of all subspaces of the Hilbert space ~n. 
We also introduce following set: 

~ ,  = { ~ tx,(~i)[A a a/n, ~a  base of  A } 
dJ i~A  

Then define ix.~: ~,, ---) =~,, as the map which maps every subspace A 
~/n onto its representative point XA. 

The results of Theorems 3 - 5  lead us to the main theorem of this section. 

Theorem 6. Let S be a quantum entity represented in 7C n. Let e be a 
measurement represented by a self-adjoint operator H~ with eigenvalues 
el . . . . .  et and corresponding eigenspaces A~ . . . . .  A~. Then there exists one 
se t  ~ e  = {Xe 1 . . . . .  Xel } of mutual orthogonal points of  ~a,,(~n) such that for 
every state P0 of S, we have Pei(Pp) = Xei'Xp as probability for obtaining an 
o u t c o m e  e i. For the points in ~e we have ~I:--] x~i = x~,. 

4. A GENERAL HIDDEN MEASUREMENT MODEL FOR QM IN 
A FINITE-DIMENSIONAL HILBERT SPACE 

Let A = {xl~l<_i_<n xi = 1 and 0 -< xi <- 1} be the set of points of the 
Euclidean simplex spanned by {hI . . . . .  hn}, a set of canonical base vectors. 
Let x be one point in A. A "selection" s for a given x consists in executing 
a deterministic process sx where h e A is a uniformly distributed stochastic 
variable. We define sx as follows: 

�9 Let Ai be the convex closure of {hi . . . . .  hi-l, x, hi+~ . . . . .  hn} and 
thus Ui Ai = A. 
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�9 I f  )t ~ Ai, then x changes to hi. 
�9 The  probabil i ty of  h being on the border  of  two regions A i and Ai 

is zero. These  situations will not contribute to global probabilist ic 
results and as a consequence it will not be necessary to make any 
convent ions for this case. 

This concludes the description of  sx and thus s itself. 

Proposi t ion  2. Consider a point x = (xl . . . . .  x,,) ~ A with A defined 
as above.  Let  s be a selection mechanism.  The  probabil i ty for obtaining an 
outcome hi is xi. 

The proof  of  this proposit ion can be found in Aerts (1986). 

We will now describe the hidden measurement  model  for a measurement  
e with n different possible outcomes on the entity S described in ~n.  Let x 0 

~n be representat ive for the state pp of  the entity. A measurement  e will 
be defined by the fol lowing steps: 

�9 Let {Xel . . . . .  xe,,} be the set of  eigenstates of  e. These n-points define 
an (n - 1)-dimensional Euclidean simplex. 

�9 One can project xp orthogonally on the n-dimensional  subspace 
spanned by {x~j . . . . .  %,}. This g i v ~  a point x'p (this is in fact a first 
transition o f  the state in the space ~ :  xp ---) x'o). 

�9 We now perform a hidden measurement  ex through the selection sx 
with x'0 as the initial state and {Xel . . . . .  Xe,,} as the canonical  base 
{hi . . . . .  hn}. Thus we find one unique final state and thus one unique 
ou tcome for this measurement  (this is a second transition of  the state 

in =n. x0 --~ Xoutcome). 

Theorem 7. The probabili ty for obtaining a final state Pi represented by 
Xe~ in a measurement  e E %n on an entity in a state pp described by =~ is 
the scalar product  Xo" Xei: Pe(pil pp) = xp " Xer 

P r o o f  x '  o is the restriction of  Xp to the linear subspace spanned by 
! 

{Xel . . . . .  X~,,}. In this subspace of  ou tcome states we can express x o in the 
base {Xel . . . . .  Xe,,}, which gives us (x'o'xel . . . . .  x'~'Xe,,) as coordinates.  By  
Proposit ion 2 we know that x'p .x~i is the probabil i ty for  obtaining an outcome 
Xe~ in the selection. Clearly xp .x~  = x'o'Xe~, which completes  the proof.  �9 

From this it follows that the above construction is in fact a hidden 
measurement  model  for the measurement  e. Along the lines of  Proposit ion 
1, one easily verifies that for the case n = 2, one finds Aerts '  elastic model.  

We still have to describe what  happens  for a measurement  with less 
than n outcomes.  Suppose we have ! possible  outcomes el . . . . .  el. It is 
possible to find a set of  n mutual or thogonal  points ~ such that there exist, 
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a partition of this set in I disjoint subsets ~ . . . . .  ~g, each of them containing 
points representing eigenstates corresponding to the respective eigenvalues 
el . . . . .  el. Let us consider the hidden measurement model as described above 
with �9 as the canonical base {hi . . . . .  hn}. The probability to obtain an 
outcome ei is the sum of the probabilities to obtain one of the x E ~i, which 
gives s x . x p  = x ~ . x  o (we use the notations of Section 3). Thus one 
finds the same probabilities as in quantum mechanics. As the final state we 
find one of the eigenstates corresponding to the obtained eigenvalue. The 
random selection of a certain set a? out of all the possible ones can also be 
considered as due to a lack of knowledge concerning the measurement. 
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